شبیه‌سازی بار رسوب معلق با استفاده از روش‌های شبکه عصبی مصنوعی، عصبی-فازی و منحنی سنجه رسوب در حوزه آبخیز هلیل‌رود

author

  • صدیقه محمدی استادیار، گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان
Abstract:

در کشورهای در حال توسعه، به‌علت مشکلات مالی و فنی به‌طور معمول داده‌­های رسوب اندکی اندازه‌گیری می­‌شوند، لذا، مدلی که بتواند با استفاده از داده­‌های دبی آب، میزان بار رسوبی را برآورد کند، می­تواند گزینه قابل اطمینانی باشد. با توجه به کاربرد انواع مدل­‌ها در پیش‌­بینی رسوب، این تحقیق با هدف ارائه مدل بهینه­ ­برآورد میزان رسوب معلق بر اساس دبی جریان بر روی ایستگاه­‌های هیدرومتری بالادست رودخانه هلیل­‌رود شامل ایستگاه­‌های هیدرومتری پل بافت، سلطانی، هنجان، چشمه عروس، میدان و کناروئیه انجام شد. در این راستا، کارایی انواع مدل­‌های مختلف منحنی سنجه رسوب شامل مدل­‌های یک خطی، دو خطی، روش حد وسط دسته‌­ها به تنهایی و نیز با ضرایب اصلاحی CF1،CF2 و FAO و مدل‌­های جعبه سیاه شامل شبکه عصبی مصنوعی و سامانه استنتاج عصبی-فازی در شبیه‌سازی رسوب معلق مورد ارزیابی قرار گرفتند. نتایج حاصل از ارزیابی این مدل‌­ها با استفاده از پارامترهای ارزیابی MAE و RMSE با استفاده از داده­‌های آزمون، حاکی از آن است که مدل­‌های عصبی-فازی در عمده ایستگاه­‌های هیدرومتری مورد مطالعه، شامل پل بافت، هنجان و کناروئیه با میزان MAE برابر 35.07، 11958.74 و 34235.27 و RMSE به‌ترتیب برابر 42.07، 28672.78 و 52735.92 تن در روز به‌عنوان بهترین روش برای شبیه‌­سازی میزان بار رسوب معلق به‌شمار می‌آیند. همچنین، مدل شبکه عصبی مصنوعی تابع پایه شعاعی در ایستگاه هیدرومتری میدان با میزان MAE برابر 384.83 و RMSE برابر 669 تن در روز، روش منحنی سنجه رسوب دو خطی در ایستگاه چشمه عروس با میزان MAE و RMSE به‌ترتیب 1.7 و 4.1 تن در روز و روش منحنی سنجه یک خطی با اعمال ضریب اصلاحی CF1 با MAE و RMSE برابر 9723.2 و 41235.6 تن در روز در ایستگاه هیدرومتری سلطانی به‌عنوان بهترین مد‌ل­‌ها برای شبیه‌سازی میزان رسوب معلق می‌­باشند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه مدل‌های شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیه‌سازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود

این پژوهش با هدف مقایسه کارآیی برخی مدل‌های شبیه­سازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاه­های هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیه­سازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدل­های شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل­...

full text

تخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان

  Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...

full text

مقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)

ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...

full text

قابلیت شبکه‌های عصبی مصنوعی جهت مدل‌سازی چند ایستگاهه بار معلق در مقایسه با روش منحنی سنجه رسوب

رسوبات حمل شده توسط رودخانه می‌تواند باعث بوجود آمدن خساراتی به اراضی کشاورزی و تأسیسات آبی گردد. برآورد صحیح بار رسوب در تأسیسات آبی مانند سدها باعث جلوگیری از صرف هزینه‌های اضافی خواهد شد. کشور ما ایران با دارا بودن رودخانه‌های متعدد، پتانسیل بالایی جهت ایجاد سد دارد. یکی از دلایل آن کاهش یافتن ظرفیت انتقال آب توسط مقطع رودخانه به دلیل انباشتگی رسوبات می‌باشد. لذا بررسی پدیده رسوب و برآورد رس...

full text

قابلیت شبکه های عصبی مصنوعی جهت مدل سازی چند ایستگاهه بار معلق در مقایسه با روش منحنی سنجه رسوب

رسوبات حمل شده توسط رودخانه می تواند باعث بوجود آمدن خساراتی به اراضی کشاورزی و تأسیسات آبی گردد. برآورد صحیح بار رسوب در تأسیسات آبی مانند سدها باعث جلوگیری از صرف هزینه های اضافی خواهد شد. کشور ما ایران با دارا بودن رودخانه های متعدد، پتانسیل بالایی جهت ایجاد سد دارد. یکی از دلایل آن کاهش یافتن ظرفیت انتقال آب توسط مقطع رودخانه به دلیل انباشتگی رسوبات می باشد. لذا بررسی پدیده رسوب و برآورد رس...

full text

مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل های ‏رگرسیونی، منحنی سنجه رسوب در برآورد ‏رسوب معلق روزانه

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  452- 466

publication date 2019-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023